607 research outputs found

    hp-Finite element solution of coupled stationary magnetohydrodynamics problems including magnetostrictive effects

    Get PDF
    We extend our existing hp-finite element framework for non-conducting magnetic fluids (Jin et al., 2014) to the treatment of conducting magnetic fluids including magnetostriction effects in both two- and three-dimensions. In particular, we present, to the best of our knowledge, the first computational treatment of magnetostrictive effects in conducting fluids. We propose a consistent linearisation of the coupled system of non-linear equations and solve the resulting discretised equations by means of the Newton–Raphson algorithm. Our treatment allows the simulation of complex flow problems, with non-homogeneous permeability and conductivity, and, apart from benchmarking against established analytical solutions for problems with homogeneous material parameters, we present a series of simulations of multiphase flows in two- and three-dimensions to show the predicative capability of the approach as well as the importance of including these effects

    Understanding the magnetic polarizability tensor

    Get PDF
    The aim of this paper is to provide new insights into the properties of the rank 2 polarizability tensor M̆ proposed by Ledger and Lionheart for describing the perturbation in the magnetic field caused by the presence of a conducting object in the eddy-current regime. In particular, we explore its connection with the magnetic polarizability tensor and the Pólya-Szegö tensor and how, by introducing new splittings of M̆, they form a family of rank 2 tensors for describing the response from different categories of conducting (permeable) objects. We include new bounds on the invariants of the Pólya-Szegö tensor and expressions for the low-frequency and high-conductivity limiting coefficients of M̆. We show, for the high-conductivity case (and for frequencies at the limit of the quasi-static approximation), that it is important to consider whether the object is simply or multiply connected but, for the low-frequency case, the coefficients are independent of the connectedness of the object. Furthermore, we explore the frequency response of the coefficients of M̆ for a range of simply and multiply connected objects

    Hidden security threat identification: A reduced order model for the rapid computation of object characterisations

    Get PDF
    This work presents computational results of a reduced order model for the rapid calculation of conducting object characterisations as a function of frequency in metal detection. Such characterisations are called their spectral signature. We present a brief description of the eddy-current model and the magnetic polarizability tensor (MPT) used for our object characterisations. The transmission problem required for the computation of the MPT and its discretisation is then described followed by a summary of the reduced order model. As an illustration of the capabilities of the approach for characterising realistic objects, we show MPT spectral signatures of a British £1 coin

    Teaching writing in primary education (grades 1–6) in Australia: A national survey

    Get PDF
    Providing adequate writing instruction and practice in schools is an essential cornerstone of writing development and it affords a diagnostic approach for teachers. But what writing instruction is being practiced in Australian primary schools? The aim of this study was to survey a sample of teachers (n = 310) about their instructional practices for writing and their preparation and self-efficacy to teach writing. The majority of the teachers surveyed indicated they allocated on average less than three hours per week for writing practice in their classrooms, with findings further showing a large variability in the frequency of writing practice ranging from 15 min to 7.5 h per week. Findings suggested an emphasis placed on teaching foundational skills, such as spelling, over the teaching of process skills, such as planning and revising. Results further indicated that less emphasis is placed on teaching handwriting and typing. The majority of participating teachers reported implementing only six of the 20 different instructional practices included in the survey on a weekly basis, with school-home strategies being the least frequently reported strategies to foster students’ writing development. Most teachers expressed positive beliefs about their preparation and self-efficacy for teaching writing. Results from multiple regression analysis showed that preparation and self-efficacy for teaching writing significantly and statistically accounted for variability in using evidence-based practices, teaching foundational skills, and teaching process skills. However, only self-efficacy made a statically significant contribution to predicting strategies to extend writing to the home environment. Implications for teaching and recommendations for research are provided

    Feasibility and Effectiveness of Using Wearable Activity Trackers in Youth: A Systematic Review

    Get PDF
    Background: The proliferation and popularity of wearable activity trackers (eg, Fitbit, Jawbone, Misfit) may present an opportunity to integrate such technology into physical activity interventions. While several systematic reviews have reported intervention effects of using wearable activity trackers on adults’ physical activity levels, none to date have focused specifically on children and adolescents.Objective: The aim of this review was to examine the effectiveness of wearable activity trackers as a tool for increasing children’s and adolescents’ physical activity levels. We also examined the feasibility of using such technology in younger populations (age range 5-19 years).Methods: We conducted a systematic search of 5 electronic databases, reference lists, and personal archives to identify articles published up until August 2016 that met the inclusion criteria. Articles were included if they (1) specifically examined the use of a wearable device within an intervention or a feasibility study; (2) included participants aged 5-19 years old; (3) had a measure of physical activity as an outcome variable for intervention studies; (4) reported process data concerning the feasibility of the device in feasibility studies; and (5) were published in English. Data were analyzed in August 2016.Results: In total, we identified and analyzed 5 studies (3 intervention, 2 feasibility). Intervention delivery ranged from 19 days to 3 months, with only 1 study using a randomized controlled trial design. Wearable activity trackers were typically combined with other intervention approaches such as goal setting and researcher feedback. While intervention effects were generally positive, the reported differences were largely nonsignificant. The feasibility studies indicated that monitor comfort and design and feedback features were important factors to children and adolescents.Conclusions: There is a paucity of research concerning the effectiveness and feasibility of wearable activity trackers as a tool for increasing children’s and adolescents’ physical activity levels. While there are some preliminary data to suggest these devices may have the potential to increase activity levels through self-monitoring and goal setting in the short term, more research is needed to establish longer-term effects on behavior

    Characterizing the shape and material properties of hidden targets from magnetic induction data

    Get PDF
    The aim of this paper is to show that, for the eddy current model, the leading order term for the perturbation in the magnetic field, due to the presence of a small conducting magnetic inclusion, can be expressed in terms of a symmetric rank 2 polarization tensor. This tensor contains information about the shape and material properties of the object and is independent of position. We apply a recently derived asymptotic formula for the perturbed magnetic field, due to the presence of a conducting inclusion, which is expressed in terms of a new class of rank 4 polarization tensors (Ammari, H., Chen, J., Chen, Z., Garnier, J. & Volkov, D. (2014) Target detection and characterization from electromagnetic induction data. J. Math. Pures Appl., 101, 54–75.) and show that their result can be written in an alternative form involving a symmetric rank 2 tensor involving 6 instead of 81 complex components in an orthonormal coordinate frame. For objects with rotational and mirror symmetries we show that the number of coefficients is still smaller. We include numerical examples to demonstrate that the new polarization tensors can be accurately computed by solving a vector-valued transmission problem by hp-finite elements and include examples to illustrate the agreement between the asymptotic formula describing the perturbed fields and the numerical predictions

    Stored in the archives: Uncovering the CN/CO intensity ratio with ALMA in nearby U/LIRGs

    Full text link
    We present an archival Atacama Large Millimeter/submillimeter Array (ALMA) study of the CN N = 1 - 0 / CO J = 1 - 0 intensity ratio in nearby (z < 0.05) Ultra Luminous and Luminous Infrared Galaxies (U/LIRGs). We identify sixteen U/LIRGs that have been observed in both CN and CO lines at ∼\sim 500 pc resolution based on sixteen different ALMA projects. We measure the (CN bright)/CO and (CN bright)/(CN faint) intensity ratios at an ensemble of molecular clouds scales (CN bright = CN N = 1 - 0, J = 3/2 - 1/2; CN faint = CN N = 1 - 0, J = 1/2 - 1/2 hyperfine groupings). Our global measured (CN bright)/CO ratios range from 0.02-0.15 in LIRGs and 0.08-0.17 in ULIRGs. We attribute the larger spread in LIRGs to the variety of galaxy environments included in our sample. Overall, we find that the (CN bright)/CO ratio is higher in nuclear regions, where the physical and excitation conditions favour increased CN emission relative to the disk regions. 10 out of 11 galaxies which contain well-documented active galactic nuclei show higher ratios in the nucleus compared to the disk. Finally, we measure the median resolved (CN bright)/(CN faint) ratio and use it to estimate the total integrated CN line optical depth in ULIRGs (τ∼\tau \sim 0.96) and LIRGs (τ∼\tau \sim 0.23). The optical depth difference is likely due to the higher molecular gas surface densities found in the more compact ULIRG systems.Comment: Accepted to MNRAS; 18 pages, 9 figure
    • …
    corecore